Math.CT: Category Theory
The incidence comodule bialgebra of the Baez--Dolan construction
Abstract:
Starting from any operad P, one can consider on one hand the free operad on P, and on the other hand the Baez–Dolan construction on P. These two new operads have the same space of operations, but with very different notions of arity and substitution. The main result is that the incidence bialgebras of the two-sided bar constructions of the two operads constitute together a comodule bialgebra.
(...)
Star-autonomous envelopes
Abstract:
Symmetric monoidal categories with duals, a.k.a. compact monoidal categories, have a pleasing string diagram calculus. In particular, any compact monoidal category is closed with [A,B] = (A* ⊗ B), and the transpose of A ⊗ B → C to A → [B,C] is represented by simply bending a string.
(...)
A localic approach to the semantics of dependency, conflict, and concurrency
Abstract:
Petri nets have been of interest to applied category theory for some time. Back in the 1980s, one approach to their semantics was given by algebraic gadgets called “event structures.” We use classical techniques from order theory to study event structures without conflict restrictions (which we term “dependency structures with choice”) by their associated “traces”, which let us establish a one-to-one correspondence between DSCs and a certain class of locales.
(...)