Past

Decoupling, Cantor sets, and additive combinatorics

Decoupling and discrete restriction inequalities have been very fruitful in recent years to solve problems in additive combinatorics and analytic number theory. In this talk I will present some work in decoupling for Cantor sets, including Cantor sets on a parabola, decoupling for product sets, and give applications of these results to additive combinatorics.

Harmonic analysis on manifolds summer school

COLT

Fourier Analysis @200

Workshop on Analysis and PDEs

Princeton Machine Learning Theory Summer School 2022

Analysis on the hypercube with applications to quantum computing

CBMS Conference

ETH Zurich

The convex hull of space curves with totally positive torsion

Decoupling and discrete restriction inequalities have been very fruitful in recent years to solve problems in additive combinatorics and analytic number theory. In this talk I will present some work in decoupling for Cantor sets, including Cantor sets on a parabola, decoupling for product sets, and give applications of these results to additive combinatorics.