he sensitivity theorem (former sensitivity conjecture) relates multiple ways to quantify the complexity, or lack of “smoothness”, of a boolean function f:{0,1}^n -> f : The minimum degree of a polynomial p(x):R^n -> R that extends f, the sensitivity s(f), and the block sensitivity bs(f).

Decoupling and discrete restriction inequalities have been very fruitful in recent years to solve problems in additive combinatorics and analytic number theory. In this talk I will present some work in decoupling for Cantor sets, including Cantor sets on a parabola, decoupling for product sets, and give applications of these results to additive combinatorics.

Multiple results in harmonic analysis involving integrals of functions over curves (such as restriction theorems, convolution estimates, maximal function estimates or decoupling estimates) depend strongly on the non-vanishing of the torsion of the associated curve.

First-order, linear differential equations; second-order, linear differential equations with constant coefficients; power series solutions; linear systems.
TA for Sections 1C, 1D. (Taught by [Chengxi Wang](http://www.math.ucla.edu/~chwang)). Link to the [CCLE site](https://ccle.ucla.edu/course/view/21S-MATH33B-1?section=15).

In this talk we discuss sharp ℓ2L2n estimates for Cantor sets. These estimates are related to the work of Biggs bounding the number of solutions to a certain type of Diophantine equations for integers contained in Ellipsephic sets, sets of numbers missing certain digits in base p.

Multiple results in harmonic analysis involving integrals of functions over curves (such as restriction theorems, convolution estimates, maximal function estimates or decoupling estimates) depend strongly on the non-vanishing of the torsion of the associated curve.

Published with Academic Website Builder